Personal tools
You are here: Home Publications Saliency prediction in the coherence theory of attention
About NIFTi
NIFTi is about human-robot cooperation. About teams of robots and humans doing tasks together, interacting together to try and reach a shared goal. NIFTi looks at how the robot could bear the human in mind. Literally. When determining what to do or say next in human-robot interaction; when, and how. NIFTi puts the human factor into cognitive robots, and human-robot team interaction in particular.   Each year, NIFTi evaluates its systems together with several USAR organizations. Rescue personnel teams up with NIFTi robots to carry out realistic missions, in real-life training areas. 

This site uses Google Analytics to record statistics on site visits - see Legal information.


V. Ntouskos, F. Pirri, M. Pizzoli, A. Sinha, and B. Cafaro (2013)

Saliency prediction in the coherence theory of attention

Journal of Biologically Inspired Cognitive Architectures.

In the coherence theory of attention, introduced by Rensink, O’Regan, and Clark (2000), a coherence field is defined by a hierarchy of structures supporting the activities taking place across the different stages of visual attention. At the interface between low level and mid-level attention processing stages are the proto-objects; these are generated in parallel and collect features of the scene at specific location and time. These structures fade away if the region is no further attended by attention. We introduce a method to computationally model these structures. Our model is based experimentally on data collected in dynamic 3D environments via the Gaze Machine, a gaze measurement framework. This framework allows to record pupil motion at the required speed and projects the point of regard in the 3D space (Pirri et al., 2011 and Pizzoli et al., 2011). To generate proto-objects the model is extended to vibrating circular membranes whose initial displacement is generated by the features that have been selected by classification. The energy of the vibrating membranes is used to predict saliency in visual search tasks.
Document Actions