Personal tools
You are here: Home Publications Linear solvability in the viewing graph
About NIFTi
NIFTi is about human-robot cooperation. About teams of robots and humans doing tasks together, interacting together to try and reach a shared goal. NIFTi looks at how the robot could bear the human in mind. Literally. When determining what to do or say next in human-robot interaction; when, and how. NIFTi puts the human factor into cognitive robots, and human-robot team interaction in particular.   Each year, NIFTi evaluates its systems together with several USAR organizations. Rescue personnel teams up with NIFTi robots to carry out realistic missions, in real-life training areas. 
Impressum

This site uses Google Analytics to record statistics on site visits - see Legal information.

 

M. Pizzoli, A. Rudi, and F. Pirri (2010)

Linear solvability in the viewing graph

In: Proc. 10th Asian Conference on Computer Vision (ACCV2010).

The Viewing Graph [1] represents several views linked by the corresponding fundamental matrices, estimated pairwise. Given a Viewing Graph, the tuples of consistent camera matrices form a family that we call the Solution Set. This paper provides a theoretical framework that formalizes different properties of the topology, linear solvability and number of solutions of multi-camera systems. We systematically characterize the topology of the Viewing Graph in terms of its solution set by means of the associ- ated algebraic bilinear system. Based on this characterization, we provide conditions about the linearity and the number of solutions and define an inductively constructible set of topologies which admit a unique linear solution. Camera matrices can thus be retrieved efficiently and large viewing graphs can be handled in a recursive fashion. The results apply to problems such as the projective reconstruction from multiple views or the calibration of camera networks.