Personal tools
You are here: Home Publications Constraint-free Topological Mapping and Path Planning by Maxima Detection of the Kernel Spatial Clearance Density
About NIFTi
NIFTi is about human-robot cooperation. About teams of robots and humans doing tasks together, interacting together to try and reach a shared goal. NIFTi looks at how the robot could bear the human in mind. Literally. When determining what to do or say next in human-robot interaction; when, and how. NIFTi puts the human factor into cognitive robots, and human-robot team interaction in particular.   Each year, NIFTi evaluates its systems together with several USAR organizations. Rescue personnel teams up with NIFTi robots to carry out realistic missions, in real-life training areas. 
Impressum

This site uses Google Analytics to record statistics on site visits - see Legal information.

 

P. Papadakis, M. Gianni, M. Pizzoli, and F. Pirri (2012)

Constraint-free Topological Mapping and Path Planning by Maxima Detection of the Kernel Spatial Clearance Density

In: Proceedings of the International Conference on Pattern Recognition Applications and Methods.

Asserting the inherent topology of the environment perceived by a robot is a key prerequisite of high-level decision making. This is achieved through the construction of a concise representation of the environment that endows a robot with the ability to operate in a coarse-to-fine strategy. In this paper, we propose a novel topological segmentation method of generic metric maps operating concurrently as a path-planning algorithm. First, we apply a Gaussian Distance Transform on the map that weighs points belonging to free space according to the proximity of the surrounding free area in a noise resilient mode. We define a region as the set of all the points that locally converge to a common point of maximum space clearance and employ a weighed mean-shift gradient ascent onto the kernel space clearance density in order to detect the maxima that characterize the regions. The spatial intra-connectivity of each cluster is ensured by allowing only for linearly unobstructed mean-shifts which in parallel serves as a path-planning algorithm by concatenating the consecutive mean-shift vectors of the convergence paths. Experiments on structured and unstructured environments demonstrate the effectiveness and potential of the proposed approach.
Document Actions